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This paper deals with the problem of motion of a parabolic contour of the from 

f(z)=oS+ Bz+v (b = ghCJ+ < 1) to.9 

on the surface of a heavy ideal liquid of finite depth. Here h is the depth of the 
liquid, U is the velocity of motion and g is acceleration due to gravity. The 

methods of [l, 21 are used to construct an asymptotic solution for both, large and 
small values of’lr , the latter quantity being the ratio of h to I (2 is the half 

length of the zone of contact between the contour and the liquid) (see Fig 1). As 
an example, a computation of the dynamic characteristics of a moving contour is 
given for the specific value of B = 0.5. 

1, The problem under consideration, of motion of a slightly curved parabolic contour 
on the surface of a heavy ideal liquid of finite depth for B < 1, can be reduced using 

the methods of operational calculus to the pressure determination in the zone of contact, 
from the following integral equation PI: 

In the formulas (0.1) and (1.1) as well as in the following, the passage to the dimen- - 
sionless quantities introduced in l3] is assumed to have been performed. 

In the papers dealing with glidlhg of a contour along the surface of a heavy ideal liq- 
uid the detailed bibiiography of which appears in the monograph [4], the position of the 
point B of separation of the liquid from the contour was assumed known and coinciding 
with the trailing edge of the contour, while the position of the point A was defined from 

the condition of boundedness of the velocity or the pressure at B. The study of the pres- 

sure distribution under a convex contour when the point of detachment is fixed, shows 
that cases are possible when. a negative pressure forms near the point of detachment. 
This is physically impossible and leads to a shift in the position of the point of detach- 

ment, This shift is determined by the condition that pressure is positive over the whole 
zone of contact, and this condition is met when the requirement that the pressure at the 
point of detachment is bounded, is supplemented by the requirement that the derivative 
of the pressure is also bounded along the contour (Fig. 1). We note that the last condition 
that the derivative of the pressure is bounded needs only hold until the point 11 reaches 

the trailing edge of the contour. 

2, Following [l] we write the expression for the kernel (1.2) when n are large, in the 
form 
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K @I = - ln I t I + ~30 + QZO I t I + a& In I t 1 + a& + a331t13 + 0 (t’ In2 / t 1) (2.1) 

co 

azo = - 0.5n6, ala = 0,5tjp, a33 = 2, QSO = 
S( 

1 -e-5 

0 
FCthC--8 - 4 

i d5 

co 

Q33=- +83++Sj~+6+63!+ 

0 
get:;-* !dC (2.2) 

The required pressure in the zone of contact is sought in the form 
11 r0,5n1 

p (2) = 0 (5) (1 - 52)-‘/z, 0 (5) = 2 2 Oij (2) h-‘lnjh 
i=Q +I) 

(2.3) 

The functions Oij (2) can be found using the formulas (1.13) of [l] and for the function 
f (z) given by (0.1). we have 

O@O (5) = n-‘P + -flz - & (I-222) 
‘010 (5) = 4n-3PQ,oS, (2) + 2n-y3u*o 122 - A (z)] - 20 (133 as, (5) 

033 (2) = n-'P 4(a,, + 0.8069q,) (i-21) + 
-I- 32~-‘~3,2 IS3 - 0.15061) + 6 [(us2 + O.~Q,,).Z + aI22 (zs - In 2) - 

- i6n-4~,02S, (s)]+a+0.3333 (2s”+1.25-4~)a,,+1.333~t-~~~~ [SQ (Q)-2S, (Q)]} 

o,r (2) = JC’PQ,, (f-29) - Ql& 
031 (5) = -2n-3PUIsQ.&?4 (2) + ~z-~~Q~QQ~Q [A (5) - “/,I 
080 (5) = J-C-‘&’ {2.667~,, + 0.8889a,, . atoSs (2) + [6a,, (1 + 22s) - 
- f9.30n-4Q,r,3]S, (2) + 64n-4Q,,,3 S, (2) + [9u,, + 2 (us% + 0.8069a,,)a,,]S4 (2)) + 
+ J@$ (QrsQsoSa (2) -/- 2Qs,QsQ [-A (5) -k 14/32] - 16n-4a,03Sp (5) + 2u,,SIo (2)) - 

- an+ [Q,,S,~ (2) t Q,~Q&, (z) - 2.667 ~T.-~Q,~~S,, (z)] (2.4) 
where 

A (2) = (1 - 2%) In [(I - 2) / (1 + z)] 

.Sa (2) = - 1.333 - 2 (s2 - 2) + 0.5 [A2 (2) - (1 - zz)*na] 
.S, (I)‘: z - 2s (0.8125-0.1067~~ - 0.060s4), + (0.7067-0.1467~~ - O.O6Oa+)A (z) 
-SQ (z) = - 0.0250s - 4zS, (2) + 2.66723 - (2.280 + 1.33322)A (2) 
-So (z) = L 9.3092 + 1.860~~ + 0.4354~~ + (3.893%-1.092Q2 - 0.2177x4)11 (x) 
-S,, (2) = 2.667s + 2z3 - 6x& (z) - (2 + z2) A (x) 
.SI1 (x) = 0.2667 + (z2 - 2.5) S, (I) - 3S, (2) 
S,, (x) = 1.067-1.778~~ - S, (x) - 1.667S4 (I) + 0.6667~s~ (x) 
S13 (x) = 0.3723 + 0.01523~~ + (0.8896-0.165722 - 0.057143P)Se (x) + 

+ (-3.146 + 1.156~~ - O.O190524)S, (2) 

the functions Si (x), i = 1, 2, . . . . 5, are given in Cl]. 
The constant P appearing in (2.4) can be regarded as the lift of the contour and can 

be obtained from the condition that the solution found satisfies the initial integral equa- 
tion (1.1). This yields the following relation : 

PR (1) + wz (1) = ny (2.5) 

q1 (h) = In 2L (1 - Q,,h-2 + 0.1801Ql,Q,~-3) + aso + 0.8106Q,,&-1 + (as2 + Q12 - 
- 0.03287~,~~)h-~ + (1.442a,, - 0.2702al,a,o - 0.1807a32a,o - 0.02450~,~~)h-~ + 

+ 0 (km4 ln2 h) 
‘pz (1) = - 1.571 + 0.2829Q2,h-’ - 0.7854h-zalz In h + (0.6337~~~ + 0.06051~,,2 + 
+ 0.7854a3.$-2 - 0.1698a,,u20 hm3 In h + (1.630Q 22 + 6.207la,,a,, + 0.01358~,,~ + 

+ 0.1698u,oa3,)h-3 + 0 (he4 In2 h) 
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The requirement that the pressure is bounded at the point B yields yet another relation 

n-‘P ‘Pa (A) + t%4 (A) + acp5 (V = 6 (2.6) 

(~3 (h) = i-4 n-aaz,&-l $ IZ,&-~ In h + 1.333~~sa,, - a.&-3 InA - (as2 + 0.8069a1, + 
-I- 4.826n-4a,oz)h-2 - (21.330~~ + l.333aaa,, + 0.1867aI,a,, + 

+ 9.370n-4a,,3)n-211-3 + 0 (hs4 hi%) 

(F4 (h) = 1 + 4n-2a,&-1 - n&-z hh + (ass + 0.8069a1, + 20.67n-4a,02)h-2 - 
- 9.333n-aa,oa,,li-3 In h. + (21.33a2, + 9.333a,,a,,, - 6.642a,,a,, + 

+ 112.6n-4a,,3)n-%-3 + 0 (k-4 lnsh) 

‘pS (h) = 1 + 1.333n-2a,&-’ + (2.667~t-~o,,,s - 0.25a,,)h-2 - 
- (4.267~~~ + 0.9557a,,a,, - 5.842n-4~,,s)~-V.-3 + 0 (a-4 ins a) 

We now turn our attention to the condition of boundedness of the pressure derivative 

at the point d referred to previously and which must be satisfied together with the con- 

ditions (2.5) and (2.6). It should be noted that differentiation of the asymptotic series 
(2.3) is not theoretically justified, therefore the process of obtaining the derivative 
requires another integral equation. As we know, the solution of the integral equation 

(1.1) with the kernel (1.2) bounded at the end point z = 1 has the form 

P (x) = Q b)q b), q E c I-1, II, 52 (5) = (1 - 5)*/z (1 + z)-‘/, 

From this it follows that the function 

Q (5) = P (2) - aQ b), a = m1 (A)‘= - fiv4 (a) 

is bounded on the interval p-1, 1] and vanishes at both its ends. Let us write the integral 
equation (1.1) in the form 

5 q,.)K(~) _1Q du=nf(z)-a 5 
-1 

(u)K(y)du 

Differentiation with respect to z followed by integration by parts of the left hand side 

yields 

s 
l dq(u) K 

du (7) du = nf’ (2) - a 1, Q (u) Kx’ (,y) du (2.7) 

-1 

For large values of h a solution of this Integral equation is constructed analogously to 
that of (1.1). Omitting numerous calculations we can write at once the condition of 

I, I boundedness of the pressure derivative at 
.Y 

the point B 

,. ff .Ai 4a + B’ps (a) = 0 (2.8) 
AWLCCLLUI-R -z fps (a) = 1 + ch-%,&- - 4u,,a-2 In a + 

P 

-4 /.,,I ,,,,,,,,,,, ,,,,,,,,,,,,,,,,, 
- 32u,,us, 3i.l5u,,u,, - - 

Fig. 1 - i56.2n-4a,,9)z-%-s + 0 (a-4 In” a) 

We note that differentiation of the asymptotic series (2.3) yields a different result. 
From (2.6)-(2.8) we easily obtain 

n&ahl ‘Pi (a) qa (a) as f qj (1) ‘Pi (a) - 4~~ (a) = 6 (2.9) 

which determines the parameter h and consequently the length of the zone of contact 
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for.p* (dimensional weight of the contour) and a* (dimensional curvature) given. 
Having found L we can find the parameters @ and y defining the position of the contour 

relative to the coordinate system used (Fig, 1) from the expressions (2.6) and (2.5). Final- 
ly we find the moment of the pressure forces M relative to the coordinate origin and the 

drag W experienced by the contour during the motion 

M = B’P~ (A), W = BP + 2aM (2.10) 

9’7 (h) = 1.571 + 0.8488&-i 
+ 0.4017~~~‘)h-2 

- i.57i~,,h-~ ln h + (0.8748~~~ + i.571Q32 + 

- i.698a,,ai,~-3 ln h + (2.716~,, + 0.9170a12a2, + 1.698ana,, + 
+ 26.81~‘a,,,s)h-3 + o (h-4 ins h) 

3. Following @] we take the asymptotic solution of (1.1) for small values of, A in the 

following form : 
P(z)=~~(~)+P2(~)--p3(=) (3.1) 

or 

(3.2) 

where pi (t), i = 1, 2 are the solutions of the Wiener-Hopf integral equations 
m 

c 
; 

pi (u) K (t - u) du = d-1 (at2 + pi t + r,), o<t<ca (3.3) 

ri = a + (- i)’ P + YY pi = - 2a - (- i)@ (i = 2, 2) 

and pa (2) is the degenerate solution obtained when h + 0. 
In obtaining the solutions of the integral equations (3.2) an approximation of the form 

(3.4) 

was used for the Fourier transform of the kernel (1.2). This led to the following result 

P* (t) = f C erf ~Bi+(~)“ze-B1]~~-Piel-~ e2)+ 

+$ [(t + .&I) erf I/t + ($j”’ CB’J (Pi - 2ahEI) + 

2crh t2 
-t A 

K 
2 + tel - & 82 

) 
erf V/Bi + (+ + e2) ($)‘” e-nt] 

1 1 1 3 
E’=C--2B’ e2=7-4B, ~364 = -j&W+ Pz+ r) (3.5) 

As in @I, the solution of the form (3.2) is used to obtain the moment M of the pressure 
forces relative to the coordinate origin and the lift P of the contour. We have 

M = l3+, fh) (3.6) 
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The conditions that the pressure and its derivative are both bounded at the point B 
lead to the following relations: 

Y + B$4 (A) + a$ 5 (k) = 0, qr (A) = 1 + Xel 
$ 5 (1L) = 1 + 21ce, - haBs1e2, P + 2W4 @I = 0 

The relations (3.6)-(3.8) easily yield an equation for the definition of Ir 
spends to (2.9) in the method used for large k 

P+ 
pUah‘Ja* = A* P94s @I % w + % @I - $6 @I 9s (VI 

(3.8) 

which corre- 

(3.9) 

With h known, the parameters 0 and Y are obtained from (3.8) and (3.9), while the 

moment M. and the drag W can be found from (3.6) and (3.2). 

Numerical computations show that the formulas of the Sects.2 and 3 providing the solu- 

tions of the stated problem for large and small A, respectively, embrace the whole inter- 
val of variation of h (0 < h < m). Matching of the methods occurs near the point ilz1.5. 

As an example, we consider the formulas obtained 

for S = .0.5. We have 

2 uzO = - 0.25n, aI2 = 0.125 

U3 as2 = 0.2629, a,% = - llosn 
B = 2.725, C = 1.362, A=2 

D IL52 
Results of the computation are given in Fig. 2 and 

Fig. 2 Table 1. The methods meet near the point li = 1.5 
and the relative difference in the results at ,-J. = 1.5 

is 3 % for the lift coefficient P” = P*lnp@haa* and 1% for-the drag coefficient 
w=w/ BP. 

Table 1 

a 0 0.25 0.5 :?I55 1.5 2 5 10 00 
p” 00 43.45 8.240 1.196 

1.157 0.6854 0.1200 0.03012 0 
W’ 1.5 1.496 1.477 1.420 1.317 

1.310 1.315 1.323 1.328 1.333 
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